If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-12b-85=0
a = 1; b = -12; c = -85;
Δ = b2-4ac
Δ = -122-4·1·(-85)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-22}{2*1}=\frac{-10}{2} =-5 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+22}{2*1}=\frac{34}{2} =17 $
| 7-7(x+9)+8x=7-5 | | G^2+16g+64=0 | | 17a+-16a+-12a=-11 | | t−21/8=6. | | -1/4n-10=-2 | | -21-17x=47 | | 9h=6=87 | | j+9=14 | | 12w^2+70w-12=0 | | 6x-x-1=29 | | 1+5w+5-7=22 | | 7(x-9)-3=22x-231 | | 2e+6=-8 | | 24p-60=-4(1-8p) | | h(1)+5h(3)=8 | | 16j^2-484=0 | | g-14=-6 | | -13-3j=-19 | | -6x+10x+11+2=-6x+6x+1 | | 5n^2-720=0 | | 2(9m+12)=3(6m+10) | | x/4/5=45 | | X+(2x-18)+90=180 | | t−218=6. | | 6.2x–5=7.9x+3.5 | | 5x-6=-71-6x | | 7(x+4=3x+56 | | 12+w=-5 | | 24s^2-90s+66=0 | | 11(p-3=5(p+3) | | 3-3(x+5)+8x=7+1 | | (9x+63)=99 |